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Research context

ELKH Cloud

Intersection of two research projects at the
for Soclal Sciences, Institute for Political S_c

* Text Mining of Political and Legal Texts
(POLTEXT) Incubator Project (Pr|n0|pal
Investigator: Miklos Seb0k) |

g e Ao o
(CAP) project (Project leaders: Zsolt Boda 4
Miki6s Sebok)




ELKH Cloud

Research problem

* Quantitative analysis of qualitative
— Classifying articles according to policy tof

—Topics: education to defense, Comparatlv
Agendas Project

 Gold standard: double-blind human
coding by well-trained researchers
 What if this is unfeasible?

— Article counts of over 100.000

— Cost and training of human coders for
scale
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The project

ELKH Cloud

 Hungarian country project of the

Comparative Agendas Project (cap.tk.r

- Media module - 3 daily newspapers

For this pilot project:

— Left-liberal Népszabadsag (NS): Over 50 C
front-page articles (1990-2014) \E

— Centre-Right Magyar Nemzet (MN): 35
articles (2002-2014)

 Hand-coding was unfeasible for our p
Solution: text mining + machir




A machine learning
solution

ELKH Cloud

« Text as Data - qualitative data is conve
quantative (matrices) |

« How to categorize articles into pre- deﬁne
classes: Dictionary-based or superwse
learning

* For the latter a sufficiently large human-
coded training/test set is needed




ELKH Cloud

Part 1

CREATING A MACHINE CODED
TRAINING SET FOR THE LEFT-WINC
DAILY NEPSZABADSAG (NS)




The Hybrid Binary Snowball
(HBS) process

ELKH Cloud

* We need to keep human coding costs aé I¢
possible, while extracting the largest possm
gain per invested human coding hour

* We simplify multi-class classification by rephra
it as a series of pairwise comparisons

* We apply a snowball method to augment the &
training set with machine-classified
observations




Coding NS articles

11 342 Hand coded . "
— Uncoded articles —| 41 9?
articles ( art'des ) ( 7 ) articl e ‘ ELKH Cloud

( Features:stopwords removed, NOT stemmed, TF )

..........

---------------------------------------------------

Virgin test set | -

i J
Classification « training one vs all Move newly
« sequentially according to aCCepte.d
SVM predefined code list coded articles
N ) i from test set i |
v to training set ; |
(O N P
Human validation of samples of newly classified
articles & decision on newly accepted coded articles

Rounds 1-2: accept only articles from samples
found to be correctly classified e
Rounds 3-4: accept all articles for codes where
sample precision at least 75%

Rounds 5-6: sampling and validation for all codes

i | together, accept all if sample precision at least 75%
AN J

........

37 143 L 16

. Hand coded and accepted Uncoded -
articles ( machine coded articles )( articles




Infrastructural bottlenecks 1:
Memory

Co

ELKH Cloud

Our desktop workstation had only 32

* Encountered problems:
— Could not work on the whole virgin data se
— Could not run certain configurations, for
example: Term frequency - Inverse document
frequency (Tf-1df) weighting
* Even the solutions were problems: ;
—Virgin data was partitioned up for processin
—This would impact Tf-1df weighting significe
* Real solution going forward:
— Using larger capacity single virtual |
cluster in the cloud




Infrastructural bottlenecks 2: '
Time

ELKH Cloud

* Huge numbers of small
operations add up quickly

* |f process runtimes become too 0
project execution becomes
unfeasible \f

* Solution: parallelizing the executic
of operations
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Part 2

USING THE CODED LEFT-WING DAILY ARTICLES
TO TEACH THE ALGORITHM HOW TO CODE {
CONSERVATIVE DAILY MAGYAR NEMZET '
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Apache Spark cluster

* With the help of the Laboratory of Parallel and D|stf|
Systems at the Institute for Computer Science and C
(SZTAKI LPDS)

* Apache Spark cluster running on five virtual mstances |
SZTAKI ELKH Cloud |

* All five virtual instances had 8 virtual processors and 32
of RAM each, and were running Ubuntu 16.04.

* Four instances acted as worker nodes and one as th mas
node of the Spark cluster. Each Spark session was runnin
with 32 VCPUs (but default parallelism set to 24) anc
GBs of RAM total on the four worker nodes combinec




ELKH Cloud

Manifold increase In speed

* Old desktop setup: roughly 3 days
full round of coding (33 code catego‘ri

* Spark cluster: ca. 30 minutes for afu
round of coding |

* This increase In speed enabled:
- 1) Rapid prototyping
- 2) Complex classification workflow




Coding MN articles

34 650
articles

—>( Coded NS articles J ( Uncoded MN articles ) —

ELKH Cloud

( Features: stopwords removed, stemmed, TF-IDF )
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Coding MN articles
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Coding MN articles

( Coded NS articles J ( Uncoded MN articles )

ELKH Cloud
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Coding MN articles
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Coding MN articles

( Coded NS articles J ( Uncoded MN articles )
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Major Topic Coded Articles Sample Size Precision
1. Macroeconomics 3833 350 0.64
2. Civil Rights 207 135 0.87
3. Health 700 249 0.88
4. Agriculture 408 199 0.79
5. Labor 127 100 0.96
6. Education 436 205 0.81
7. Environment 71 71 0.42
8. Energy 542 226 0.96
9. Immigration 8 3 0.88
10. Transportation 459 210 0.78
12. Law and Crime 570 230 0.93
13. Social Welfare 72 72 0.74
14. Housing 168 118 0.85
15. Domestic Commerce 93 93 0.90
16. Defense 342 182 0.77
17. Technology 196 131 0.82
18. Foreign Trade 27 27 0.11
19. International Affairs 7617 366 0.89
20. Government Operations 1247 294 0.67
21. Public Lands 10 10 0.70
23. Culture 124 100 0.99
26. Weather and Natural Disasters 201 133 1.00
27. Accidents, Fire Incidents, Disasters 50 50 0.92
28. Arts, Cult., Hist., Sci. and Entertainment 677 246 0.90
29. Sports News and Recreation 385 193 0.90
30. Deaths, Fatalities, Obituaries 41 41 0.85
31. Churches and Religion 194 130 0.98
33. Political Parties 661 244 0.99
34. Tabloid News, Celebrities 28 28 0.54
35. Crime 339 181 0.91
36. Political Corruption 8 8 0.63
Total Result 19841 4630 0.84

Co

ELKH Cloud




CAP code categories

26. Weather and Natural Disasters 1
33. Political Parties 4

23. Culture 4

31. Churches and Religion 1

B. Energy 1

5. Labor 4

12. Law and Crime 1

27. Accidents, Fire Incidents, Disasters 1
35. Crime 4

15. Domestic Commerce 4

29. Sports News and Recreation 1
28. Arts, Cult., Hist., Sci. and Entertainment 4
19. International Affairs 4

3. Health 1

9. Immigration 4

2. Civil Rights 4

30. Deaths, Fatalities, Obituaries 9
14. Housing 4

Total Result 4
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1. Macroeconomics 9

36. Political Corruption 4

34. Tabloid News, Celebrities 1

7. Environment 4

18. Foreign Trade 1
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CAP code categories
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CAP code categories
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CAP code categories
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CAP code categories
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Precision and total number of coded articles of MN corpus by' CAP code category
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Major Topic Coded Articles Sample Size Precision
1. Macroeconomics 3833 350 0.64
2. Civil Rights 207 135 0.87
3. Health 700 249 0.88
4. Agriculture 408 199 0.79
5. Labor 127 100 0.96
6. Education 436 205 0.81
7. Environment 71 71 0.42
8. Energy 542 226 0.96
9. Immigration 8 3 0.88
10. Transportation 459 210 0.78
12. Law and Crime 570 230 0.93
13. Social Welfare 72 72 0.74
14. Housing 168 118 0.85
15. Domestic Commerce 93 93 0.90
16. Defense 342 182 0.77
17. Technology 196 131 0.82
18. Foreign Trade 27 27 0.11
19. International Affairs 7617 366 0.89
20. Government Operations 1247 294 0.67
21. Public Lands 10 10 0.70
23. Culture 124 100 0.99
26. Weather and Natural Disasters 201 133 1.00
27. Accidents, Fire Incidents, Disasters 50 50 0.92
28. Arts, Cult., Hist., Sci. and Entertainment 677 246 0.90
29. Sports News and Recreation 385 193 0.90
30. Deaths, Fatalities, Obituaries 41 41 0.85
31. Churches and Religion 194 130 0.98
33. Political Parties 661 244 0.99
34. Tabloid News, Celebrities 28 28 0.54
35. Crime 339 181 0.91
36. Political Corruption 8 8 0.63
Total Result 19841 4630 0.84




Main contributions of HBS
and the present study "

ELKH Cloud

» Enhance ML precision and recall by both hu
Input (validation) and workflow design (one
classification, ensemble voting) |

* Start working from a limited training set
* Able to maximize ROI on human coding \
* Move between (intra-domian) corpora

* Take advantage of cloud infrastructure anc
parallel processing with Apache Sparl




ELKH Cloud

Further work

* Implement a finishing step using regula
expressions to correct systematic err

- *design” in Environment
- “icerink” in Public Lands

* Testing the HBS approach on further
languages

* Generalizing the method to other dom ;.
beyond media




Co

ELKH Cloud

Thank you for your attentio
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