DR. ZOLTAN JUHASZ | 25 focren Troneers
UNIVERSITY OF PANNONIA, VESZPREM

juhasz@yvirt.uni-pannon.hu

SETTING THE SCENE

Bioelectrical Brain Imaging Laboratory

1. What we do: parallel biomedical signal processing and analysis
2. Why we need high-performance computational resources

3. Problems we normally face: financial, administrative and technical

4. Why we chose the SLICES-SC resources

5. Benefits and results

BIOMEDICAL (EEG) SIGNAL PROCESSING
Nt i A W ol P

WW"‘ High temporal resolution registration of cortical activity
* Time-frequency analysis

‘“V‘AWW‘W * Resting state and task-related analysis
* Connectivity analysis

WWW * Developing new methods that provide new information, &7 N\
WVW\HW better temporal and spatial resolution, uncover sub- ./ o\
processes of task execution

A ey .
"‘f'vﬁ P -

NEED FOR HIGH-PERFORMANCE COMPUTATIONAL RESOURCES

EEG research is mainly conducted using MATLAB scripts

tendency to use limited number of channels, low sampling frequency, short
measurements, to keep execution time within practical limits

Most sophisticated experiments and analysis methods are excluded!

2k samples/channel/second — 512k samples for 256 channels/sec — 107 samples for 30 min
measurement

at 1k ops per sample — 10'2 ops (1 Top/s)

MATLAB execution times are in the order of hours per subject
limited parallelism support, mainly clusters

Research goal:

Massively parallel GPU algorithms to reduce time from hours/days to seconds

single-GPU and multi-GPU systems, price /performance ratio

TYPICAL HPC-RELATED DIFFICULTIES

Options for increasing computational capacity:

in-house cluster (CPU and /or GPU) — very high upfront cost, only viable if used
for 24 /7 production use

Cloud — cost, still limited HPC and GPU support, mainly single node architecture

Supercomputers — fine if access is granted, high threshold to entry
current situation in Hungary: there is no suitable system available to us
existing systems (Leo) are outdated (GPU model no longer supported)
Komondor (A100 GPUs, NVLink!) is still in test mode
PRACE resources: possible, but mainly for production runs

SLICES-SC project — fast access to resources for experimentation /
development

EEG PROCESSING FUNDAMENTALS

Typical operations

- high-pass, low-pass filtering, mean removal, segmenting into trials
- trial averaging and quantification, statistical tests

- spectrum estimation (global or time-varying); FFT, wavelets

- artefact removal: Independent Component Analysis

- source localisation

- connectivity estimation, calculation of graph metrics

Typically performed for subject/patient populations of size 20-100

OPPORTUNITIES FOR PARALLEL EXECUTION

Fortunately, EEG processing lends itself to parallel execution

- subjects: “embarrassingly parallel”

- channels:

- samples:

- spatial ops: one time point but all electrodes

- algorithmic level:

High degree of parallelism, ideal for GPU execution

One GPU is a huge improvement: 200-2000x speedup over MATLAB
What about multiple GPUs? Can we utilise them effectively?

GPULAB RESOURCES

Several GPU clusters with different types of GPU cards

What we needed was Cluster 6:

NVIDIA HGX-2 with 16 Tesla V100 GPUs, 96 2.7Ghz vCPU cores with 1.5TB RAM
NVLink switch connection fabric

16 NVIDIA Tesla V100 GPUs

£ A L A E A E &

PCle

-]
el x16

GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU GPU
KV LINE HV LINK NV LINK NV LINK NV LMK H¥ LUK HV LK NV LINK NV LINK
T ORERERT ARRERT RRARATRERAR. RS AR ArALAT RLARAT

N LINK NV LINK NV LINK NV LINK NW LINK MW LINK N LINK
TRAAER TARRLA TRAAGA CARALA CALAAA CAAAAM CAAALE ilI

& MWK

rll-ll-ll-ll-ll-ll-ll-

I & NV LINK
NVSWITCH '_ % =‘ NVSWITCH

- HGX-2 GPU Baseboard

HGX-2 GPU Baseboard ,

ACCESS AND USAGE

We used the GPULab system both in interactive and CLI batch mode

Interactive: mainly for checking resources, job status and uploading
files -- JupyterHub

Batch: program execution using a batch execution system
The system is based on the Docker container system
Many predefined Docker images are available

We created our own image for HPC workloads

IDLab GPULab

B0 Dashboard

88 Jobs

= All Jobs

A My Jobs

+ Create Job
BH Live

¢ Available Resources

Available Resources Per Cluster

Cluster

i@d GPU Model [Storage

Tesla V100-SXM3-32GB /project_ghent/

with 31 GB RAM
/project scratch/

Nodes

gpulab6A

89 4 | 16 GPUs =vailabi-
0 24 |/ 96 CPUs = ailzbie
4 | 1583 GB CPURAM =vailanie

IDLab GPULab

88 Jobs

:= List Jobs

+ Create job
EH Live

o Clusters ID Project v Usemmame © = Name =
[Slaves
& History 7eaec7 Orca pbonte :::E;ir:;b-
izl Summary

b Users ca3sfe DeepBeamforming ykuno ::;F;);ir:;b-

I~ Slaves

State ©

-

RUNNING

-
RUNNING

Running

5 jobs

Created
s

July 22,
2019 8:25
AM

July 22,
2019 3:55
AM

C
& Queued

0 jobs

Host &=

® Generalinfo B Logs [Debugginglogs [Usage Graphs Raw Job JSON

CPU/GPU Utilization

CPU v J GPU v & Network v : Other v

16 o CPU Usage -o- GPU Usage

s 12-
[}]
o
(1]
1]
D 8_
4+ \

S
—

—

1/24/2023 (]3:26:45 PM 1/24/2023 6:26:50 PM 1/24/2023 (I3:26:55 PM 1124/2023_|6:2_7:01 PM

Memory Utilization

1/24/2023 6:27:12 PI\.IKI

CPU v J GPU v & Network v i Other v

08 -~ CPU Memory Used -o- GPU Memory Used
g 0.6 .f/
:
2 04 A

_7--//
.'/
0.2 ‘ /

_______ i

1/24/2023 6:27:12 PM

{

“name": “CUDA_MEMD", Sample job definition file

"description”: "Test CUDA MEMD",
"request": {
"docker": {
"image": "gitlab.ilabt.imec.be:4567/ilabt/gpu-docker-stacks/code-server-notebook:latest",
"command": "/project _ghent/startScript.sh",
"storage": [
{
"hostPath": "/project ghent",
"containerPath": "/project _ghent”

}
]
}s

"resources": {
"clusterId": 6,
"cpus": 4,
"gpus": 2,
"cpuMemoryGb": 16,
"minCudaVersion": 11

}s

"scheduling": {

"maxDuration": "1 min",

"interactive": false

GPU EXECUTION PROPERTIES

GPU uses a fixed number
of cores 0,1

convolution (128 EEG channels)

vundersubscribed oversubscribed

throughput, not latency
optimised

inefficient if there is not
enough work

will not run faster if fully
loaded

per sample computation time (us)

0,01
64 512 4096 32768 262144 2097152

sample size

TRADITIONAL MULTI-GPU APPROACH

node 1

node 2

node 3

node 4

Distributed, message-passing
programming model Host

Input

Data

1. Distribute data using MPI

2. Perform MP| communication to

S —

MPIlmmunilﬁon

S —

|

collect data for GPU operations
GPU
3. Execute GPU code

=

[

[

=

[

)
)

data in GPU memory
4. Perform MPI communication to [
send results to other GPUs

5. If necessary, collect data on

host and re-distribute results

among nodes

== O |&=Fn

{aI——

MPIlmmunil’rion

{aI——

¢t [| et

l

DIRECT MULTI-GPU AP

PROACH

node 1 node 2 node 3 node 4
Shared-memory programming
model, asynchronous in-kernel Host Input | Data
communication

1. Distribute data using MPI

2. Execute GPU code, access
other GPU memory directly for
data (load/store)

3. If necessary, collect data on

host and re-distribute results N
among nodes

GPU kernels access
peer memory directly

NN

RESULTS

- Single-GPU algorithms

tested on the V100 GPU convolution
100000
- simple multi-GPU test 128 channels
programs developed and
executed 10000
- multi-GPU EEG algorithms 35
designed, some are tested £ 1000 | channel
for functionality <
.0 2
- full scale scalability and g 100 l g
performance tests in the o 16 GPUs
coming weeks 10
—o——o—o—
1
64 512 4096 32768 262144 2097152

sample size

CONCLUSIONS

Several multi-GPU EEG processing algorithms have been developed
Full-scale (16 GPU) scalability test is yet to be done

The SLICES-SC project and the GPULab infrastructure gave us state-
of-the-art resources for the development

Allowed us to progress with our work until other HPC resources become
available

	1. dia: Dr. Zoltán JuhásZ University of Pannonia, Veszprém
	2. dia: Setting the scene
	3. dia: Biomedical (EEG) signal processing
	4. dia: Need for high-performance computational resources
	5. dia: Typical HPC-related difficulties
	6. dia: eEG processing fundamentals
	7. dia: opportunities for parallel execution
	8. dia: GPULab resources
	9. dia: access and usage
	10. dia
	11. dia
	12. dia
	13. dia
	14. dia: GPU execution properties
	15. dia: Traditional Multi-GPU approach
	16. dia: Direct Multi-GPU approach
	17. dia: RESULTS
	18. dia: conclusions

