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SETTING THE SCENE

Bioelectrical Brain Imaging Laboratory

1. What we do: parallel biomedical signal processing and analysis
2. Why we need high-performance computational resources

3. Problems we normally face: financial, administrative and technical

4. Why we chose the SLICES-SC resources

5. Benefits and results



BIOMEDICAL (EEG) SIGNAL PROCESSING
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NEED FOR HIGH-PERFORMANCE COMPUTATIONAL RESOURCES

EEG research is mainly conducted using MATLAB scripts

tendency to use limited number of channels, low sampling frequency, short
measurements, to keep execution time within practical limits

Most sophisticated experiments and analysis methods are excluded!

2k samples/channel/second — 512k samples for 256 channels/sec — 107 samples for 30 min
measurement

at 1k ops per sample — 10'2 ops (1 Top/s)

MATLAB execution times are in the order of hours per subject
limited parallelism support, mainly clusters

Research goal:

Massively parallel GPU algorithms to reduce time from hours/days to seconds

single-GPU and multi-GPU systems, price /performance ratio



TYPICAL HPC-RELATED DIFFICULTIES

Options for increasing computational capacity:

in-house cluster (CPU and /or GPU) — very high upfront cost, only viable if used
for 24 /7 production use

Cloud — cost, still limited HPC and GPU support, mainly single node architecture

Supercomputers — fine if access is granted, high threshold to entry
current situation in Hungary: there is no suitable system available to us
existing systems (Leo) are outdated (GPU model no longer supported)
Komondor (A100 GPUs, NVLink!) is still in test mode
PRACE resources: possible, but mainly for production runs

SLICES-SC project — fast access to resources for experimentation /
development



EEG PROCESSING FUNDAMENTALS

Typical operations

- high-pass, low-pass filtering, mean removal, segmenting into trials
- trial averaging and quantification, statistical tests

- spectrum estimation (global or time-varying); FFT, wavelets

- artefact removal: Independent Component Analysis

- source localisation

- connectivity estimation, calculation of graph metrics

Typically performed for subject/patient populations of size 20-100



OPPORTUNITIES FOR PARALLEL EXECUTION

Fortunately, EEG processing lends itself to parallel execution

- subjects: “embarrassingly parallel”

- channels:

- samples:

- spatial ops: one time point but all electrodes

- algorithmic level:

High degree of parallelism, ideal for GPU execution

One GPU is a huge improvement: 200-2000x speedup over MATLAB
What about multiple GPUs? Can we utilise them effectively?



GPULAB RESOURCES

Several GPU clusters with different types of GPU cards

What we needed was Cluster 6:

NVIDIA HGX-2 with 16 Tesla V100 GPUs, 96 2.7Ghz vCPU cores with 1.5TB RAM
NVLink switch connection fabric

16 NVIDIA Tesla V100 GPUs
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ACCESS AND USAGE

We used the GPULab system both in interactive and CLI batch mode

Interactive: mainly for checking resources, job status and uploading
files -- JupyterHub

Batch: program execution using a batch execution system
The system is based on the Docker container system
Many predefined Docker images are available

We created our own image for HPC workloads
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IDLab GPULab
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{

“name": “CUDA_MEMD", Sample job definition file

"description”: "Test CUDA MEMD",
"request": {
"docker": {
"image": "gitlab.ilabt.imec.be:4567/ilabt/gpu-docker-stacks/code-server-notebook:latest",
"command": "/project _ghent/startScript.sh",
"storage": [
{
"hostPath": "/project ghent",
"containerPath": "/project _ghent”

}
]
}s

"resources": {
"clusterId": 6,
"cpus": 4,
"gpus": 2,
"cpuMemoryGb": 16,
"minCudaVersion": 11

}s

"scheduling": {

"maxDuration": "1 min",

"interactive": false



GPU EXECUTION PROPERTIES

GPU uses a fixed number
of cores 0,1

convolution (128 EEG channels)

vundersubscribed oversubscribed

throughput, not latency
optimised

inefficient if there is not
enough work

will not run faster if fully
loaded

per sample computation time (us)

0,01
64 512 4096 32768 262144 2097152

sample size



TRADITIONAL MULTI-GPU APPROACH

node 1
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node 3

node 4

Distributed, message-passing
programming model Host
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DIRECT MULTI-GPU AP

PROACH

node 1 node 2 node 3 node 4
Shared-memory programming
model, asynchronous in-kernel Host Input | Data
communication

1. Distribute data using MPI

2. Execute GPU code, access
other GPU memory directly for
data (load/store)

3. If necessary, collect data on

host and re-distribute results N
among nodes

GPU kernels access
peer memory directly

NN




RESULTS

- Single-GPU algorithms

tested on the V100 GPU convolution
100000
- simple multi-GPU test 128 channels
programs developed and
executed 10000
- multi-GPU EEG algorithms 35
designed, some are tested £ 1000 | channel
for functionality <
.0 2
- full scale scalability and g 100 l g
performance tests in the o 16 GPUs
coming weeks 10
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CONCLUSIONS

Several multi-GPU EEG processing algorithms have been developed
Full-scale (16 GPU) scalability test is yet to be done

The SLICES-SC project and the GPULab infrastructure gave us state-
of-the-art resources for the development

Allowed us to progress with our work until other HPC resources become
available
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